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Abstract - We show that the transformation equations for the space-time coordinates of the same event, derived on 
the basis of the constancy of the round trip speed of light, could be derived by performing the Lorentz-Einstein 
transformations of the event generated by a subluminal one way signal when it arrives at the location of the clock to 
be synchronized with the clock located at the origin of the inertial reference frame. Considering that it propagates 
with speed cf=c/n (n>1), n dependent “general transformation equations are derived. Particular values of n are 
considered, leading to absolute simultaneity. 
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1. Introduction 
 
            The standard formulation of the postulates on which Einstein’s special relativity is based states: [1] 
(α) Relativity principle: All physical laws are the same in any inertial reference frame (IRF). No reference 
frame is “privileged” i.e. distinguishable the other (IRF)’s by means of “internal” empirical evidences. 
(β1) Invariance of the velocity of light: The velocity of light in empty space is the same in all (IRF). Its 
value is given by the universal constant c. It is considered [2] that (β1) cannot be empirically tested and so 
they consider that (β1) should be stated as: (β2) The velocity of light is a universal constant c in any (IRF) 
along any closed path. 
 The two propositions (β1) and (β2) lead to different synchronization procedures. Both are 
performed in a given (IRF), say I, involving the clocks K0(0) and K(x), the first located at the origin O, the 
second at a point M(x) located on the OX axis. Figure 1a illustrates the synchronization of the two clocks 
based on (β1), proposed by Einstein, on a classical space-time diagram.. When clock K0(0) reads te a 
source of light S(0) located at the origin O emits a light signal in the positive direction  of the OX axis. It 
arrives at the point M(x) when the clock K(x) located there reads tE=x/c. Being reflected back without 
delay it returns to the origin O when clock K0(0) reads tr. Relativists say that K0(0) represents the wrist 
watch of an observer R0(0) located at the origin O. We underline that tE is a reckoned time, the times te 
and tr being displayed by the wrist watch mentioned above. The times te; tE and tr being related by 
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resulting 

( )1

2E e rt t t= + .          (3) 

The conclusion is that R0 can assign to the event associated with the arrival of the synchronizing 
signal to point M(x) a time coordinate tE knowing the corresponding readings of his wrist watch. 
 
 
 
 
 
 
 
 
 
  
 
 
                                                                                                                                               
                                     
 
 
 
 
 
 
  
 
 
 

                                                                                                                     
Figure 1. (a) Illustrating the synchronization of two distant clocks, following Einstein’s procedure (β1) on a classical 
space-time diagram. (b) Illustrating the synchronization of two distant clocks following Reichenbach’s procedure on 
a classical space-time diagram. 
 

Figure 1.b illustrates the synchronization of the same two clocks based on sentence (β2). A source 
located at the origin O emits a signal that propagates at a subluminal speed c+<c when the clock located 
there reads te. The emitted signal arrives at the location of clock M(x) when the wrist watch of observer R0 
reads tR =x/c+ and returns back to the origin O propagating with speed c->c when the clock located there 
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reads tr. The clock readings te and tr  are the same as in the case of the (β1) synchronization. The geometry 
of the classical space-time diagram tells us that te; tR and tr are related by 

R e

x
t t

c+

= +            (4) 

R r

x
t t

c−

= −            (5) 

Combining (1) and (4) the result is 

1E R

x c
t t

c c+

 
= + − 

 
          (6) 

whereas combining (2) and (5) the result is 

1E R

x c
t t

c c−

 
= − − 

 
.          (7) 

Consistency requires that 

1 1
c c

c c+ −

 
− = − − 

 
          (8) 

or 

2 1 1

c c c+ −

= +            (9) 

c in (9) representing the two way (round trip) speed of light. Equation (9) shows that the one way speed of 
light in special relativity theory and the round trip speed of light are equivalent. 
 
2. Continuing with Einstein’s philosophy 
 

Einstein considering equation (6) will say that it is the result of a scenario followed from the I 
inertial reference frame, that involves the clock K0(0) located at the origin O and the clocks K1(x) and 
K2(x) located at the same point of the OX axis. Clock K1(x) is synchronized to K0(0) using an one way 
signal that propagates with speed c, whereas clock K2(x) is synchronized to K0(0) using a subluminal 
signal propagating with the speed c+<c. In order to simplify the notations we consider that c+=c/n where 
n>1 with which (6) becomes 

(1 )E R

x
t t n

c
= + − .          (10) 

In accordance with (α) (10) reads in I’ 
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(1 )E R

x
t t n

c
′ ′= + −           (11) 

Following in his philosophy Einstein will consider that the Lorentz-Einstein transformations 

( )Ex x Vtγ ′= +            (12) 

    

2E E

V
t x t

c
γ  ′ ′= + 
 

           (13) 

( )1 Ex Vtγ′ = −            (14) 

    

2E E

V
t t x

c
γ  ′ = − 
 

           (15) 

hold exactly only in the case when the times tE and Et′  are displayed by standard synchronized clocks, V 
representing the constant speed with which I’ moves relative to I in the positive direction of the 
permanently overlapped OX(O’X’) axes. They should also hold exactly when we replace in them tE and 

Et′  with (10) or (11) respectively Doing so a transfer takes place from the times displayed by clocks (β1) 
synchronized, to times displayed by clocks (β2) synchronized using subluminal signals. 

Consider that in I’ frame the clocks are synchronized using the subluminal signal, that generates, 
arriving at the location of clocks 1( )K x′ ′  and 2( )K x′ ′ , the event 






 ′−
′

+′=′′=′ )1(, n
c

x
ttxE RE .        (15a) 

Performing the Lorentz-Einstein transformations of the space time coordinates which define event 
(15a) the result is 

( )1 1 n

V
x n x Vt

c
γ   ′ ′ ′= + − +    

        (16) 

1E R

x V
t t n

c c
γ ′  ′ ′= + + −  

  
.         (17) 

Combining (16) and (17) we obtain the corresponding inverse transformations 

( )Ex x Vtγ′ = −           (18) 

1 (1 ) 1R E

V V x
t n t n

c c c
γ     ′ ′ ′= + − − − +       

.       (19) 

That approach is suggested by Yuan Zhong Zhang but not fulfilled. [3] 
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Equation (18) being synchrony parameter independent it holds in all “theories” that correspond to 
different values of the synchrony parameter n’. 

 
3. Continuing with Reichenbach’s philosophy 
 

The equations we have derived above are presented by many authors. A review of them is 
presented by Yuan Zhong Zhang [3]. Edwards [4] derives them from (α) and (β2) considering that in both 
inertial reference frames the synchronization of the clocks takes place with different synchrony parameters 
q and q’ respectively. In the particular case when in I the clocks are standard synchronized (β1) whereas in 
I’ the clocks are nonstandard synchronized, the Edwards [4] transformations become using our notations 

( )( Ex x Vtγ′ = −           (20) 

1E E

V V x
t q t q

c c c
γ     ′ ′ ′= + − +    
    

        (21) 

resulting that following Einstein’s philosophy , we can consider that Edwards equations are the result an 
one way clock synchronization in I’, using a synchronizing signal that propagates with speed (1-q’) i.e 
with speed 

1

c c
c

n q+′ = =
′ ′−

          (22) 

resulting that for n’=1 and q’=0 we recover the Lorentz-Einstein transformations. q’ being negative, the 
synchronizing signal in I’ is subluminal. 

If Edward’s synchrony parameter dependent transformation equations were derived following 
Einstein’s philosophy  we could consider that all the “theories” that result for different values of the 
synchrony parameter n’ are the consequence of the same philosophy.  

 
4. Tangherlini [5] Selleri [6] and Abreu and Guerra [7]. Absolute simultaneity 
 

The transformation equations proposed by the authors mentioned above and probably by many 
others are characterized by the fact that the transformation equation they propose, for the time coordinates, 
lead to absolute simultaneity (∆tE=0 implies ∆ Rt′ ) We recover them from the synchrony parameter 

independent equation (20) 

( )Ex x Vtγ′ = −           (23) 

and from (21) imposing the condition that they should be space coordinate independent which could be 
fulfilled imposing to n’ and g’ the values 

1 0
V

n
c

′− + =            (24) 

0
V

q
c

′ + =             (25) 

recovering the transformation equation proposed by those authors 
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1

R Et tγ −′ = .           (26) 

 
The peculiarities of the different ways in which equations (23) and (25) are derived could be found 

out from the original papers we quote. 
 

5. An extension to two space dimensions 
 
Introductory textbooks [8] perform the transition from one space dimensions to two ones by 

simply adding to the transformation equations derived so far the equation 

y y′=             (27) 

as a result of the fact that distances measured perpendicular to the direction of relative motion have the 
same magnitude in all inertial reference frames in relative motion. The proof of (27) does not involve light 
signal being merely a consequence of the relativity principle [9]. 

Considering the equations (23) and (27), both synchrony parameters independent we could state 
that all the physical quantities defined as a quotient of two lengths measured in the same inertial reference 
frame are synchrony parameter independent as well. As a first example we could consider the aberration 
of light effect [10] We introduce polar coordinates (r,θ) in I and (r’,θ’) in I’ for defining the location of a 
point where events take place (r,r’ lengths of position vectors, θ,θ’ polar angles made by the position 
vectors with the positive direction of the permanently overlapped OX(O’X’) axes. Combining (23) and 
(27) expressed as a function of polar angles we obtain that the lengths of the position vectors transform as 

2 2

2

2

1 cos

1

V

cr x y r
V

c

θ−
′ ′ ′= + =

−
         (28) 

a n’ independent transformation formula 
What we compare in an aberration of light effect are the polar angles θ and θ’ that define the 

directions along which the same signal propagates when detected from I and I’ respectively. By definition 

cos
cos

1 cos

V
x c

Vr
c

θ
θ

θ

−′′ = =
′ −

.         (29) 

which leads directly to 

cos
cos

1 cos

V

c
V

c

θ
θ

θ

′ +
=

′+
.          (30) 

enabling us to present (28) as 
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2

21

1 cos

V

cr r
V

c
θ

−
′ =

′−
.          (31) 

 Equations (28) and (31) are largely used in special relativity theory. If r=ctE describes the wave 
front of a spherical wave emitted from O at t=0 detected from I then (28) describes the wave front of the 
same wave detected from I’. [11] If tE=R/c represent the geometric locus of simultaneous events in I then 
(28) represent their geometric locus in I’ [12]. 

We underline that the transformation equations derived above have the same shape in all 
“theories” that correspond to different values of the synchrony parameter n’. 

 
6. Kinematics in different theories corresponding to different values of the synchrony parameter n’ 
 

The definition of the speed of a given tardyon involves time the transformation of which involves 

the synchrony parameter n’ and so does speed. By definition ,E x
E

x
u

t
=  and ,R x

R

x
u

t

′′ =
′

 represent the speeds 

of the same tardyon measured in I using standard synchronized clocks whereas in I’ using nonstandard 
synchronized ones we obtain that they transform (add) as 

,
,

,1 (1 ) 1

E x
R x

E x

u V
u

uV V
n n

c c c

−
′ =

   ′ ′+ − − − +     

       (32) 

resulting that the origin O’ ( , 0R xu′ = ) of I’ moves with speed V relative to I, the origin O of I (u,x=0 

moving relative to I’ with speed 

,

1 (1 )
R x

V
V

V
n

c

−′ =
′+ −

.          (33) 

Imposing the condition of absolute simultaneity (n’=1+V/c) the equations derived above become 

.
, , ' 1 / 2

21

E x
R x n V c

u V
u

V

c

= +
−′ =

−
          (34) 

and 

, , ' 1 / 2

21
R x n V c

V
V

V

c

= +′ = −
−

.          (35) 

The light signal that propagates with speed c relative to I propagates with speed ,R xc′  relative to I’ 

with speed 
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,

1
R x

c
c

V

c

′ =
+

.           (36) 

Extending the problem to two space dimensions we derive the transformation equations for the 
OY(O’Y’) components of the speed of the same tardyon starting with its definition in I’ 

2

2

,
,

1

1 (1 ) 1

y

R y
E xR

V
u

y cu
uV Vt

n n
c c c

−′′ = =
′    ′ ′+ − − − +     

.      (37) 

Introducing polar coordinates (32) and (37) become 

,

cos

1 (1 ) 1 cos

E
R x E

E

V

u
u u

uV V
n n

c c c

θ

θ

−
′ =

   ′ ′+ − − − +     

      (38) 

2

2

,

1 sin

1 (1 ) 1 cos
R y E

E

V
cu u
uV V

n n
c c c

θ

θ

−
′ =

   ′ ′+ − − − +     

      (39) 

the magnitudes of the speeds transforming as 

2 2
2

2cos 1 sin

1 (1 ) 1 cos
R E

E

V V

u c
u u

uV V
n n

c c c

θ θ

θ

  − + −  
   ′ =

  ′ ′+ − − − +  
  

.      (40) 

If we replace the tardyon considered so far with a photon that propagates relative to I with speed c 
in all directions in space, equation (40) tells us that detected from I’ its propagation is anisotropic being 
described by 

cos
1

1 cos 1 cos

cos1 (1 ) 1
1 (1 ) 1

1 cos

R

V
V c

V Vc
c cc c

VV V
n n V Vcc c n n

Vc c
c

θ

θ θ

θ

θ

′ +
−

′− +
′ = =

   ′ +′ ′+ − − − +      ′ ′  + − − + − 
 ′+

.   (41) 

In the case of absolute simultaneity (41) becomes 
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, 1 /

1 cos
R n V c

c
c

V

c
θ

′= +′ =
′+
.         (42) 

resulting that in the direction of the O’Y’ axis (θ’=π/2 and θ’=3π/2) anisotropy fades away. 
 
7. The role of synchronization in relativistic dynamics 
 

The problem is to find out synchrony parameter dependent transformation equations for the 
momentum and the energy of a tardyon. Observers from I knowing classical dynamics define the OX 
component of the momentum as 

, ,E x E xp mu=            (43) 

whereas observers from I’ will define it as 

, ,R x R R xp m u′ ′ ′= .           (44) 

Combining (43) and (44) we obtain 

, , ,

,

1

1 (1 ) (1 )

R x E x E x

E xR

V

p p u
uV Vm m

n n
c c c

−
′

=
′ ′ ′+ − − − +

.       (45) 

Equation (45) suggests considering that 

( ), ,R x E xp p mV′ = Γ −           (46) 

,1 (1 ) 1E x
R

pV V
m m n n

c c c

    ′ ′ ′= Γ + − − − +       
      (47) 

where Г is an unknown function of the relative speed V but not of the physical quantities involved in the 
transformation process. We obtain its algebraic structure imposing the condition that for n’=1 (47) become 
the transformation equation proposed by Einstein’s special relativity theory 

,2 E x

V
m m p

c
γ  ′ = − 
 

          (48) 

where m and m’ represent the relativistic masses of the same tardyon measured in the conditions that in I 
and I’ the clocks are standard synchronized. The result is 

1/ 22

2
1

V

c
γ

−
 

Γ = = − 
 

          (48) 

and so we obtain the synchrony parameter independent transformation 
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,
, 2

21

E x
R x

p mV
p

V

c

−
′ =

−
          (49) 

and the synchrony parameter dependent one 

,1 (1 ) 1 E x
R

pV V
m m n n

c c c
γ     ′ ′ ′= + − − − +       

      (50) 

Defining EE=mc2 and 2
R RE m c′ ′=  as being the energies of the same tardyon measured in I and in I’ 

respectively (49) becomes 

, , 2R x E x E

V
p p E

c
γ  ′ = − 
 

         (51) 

equation (50) becoming 

,1 (1 ) 1R E E x

V V
E n E n cp

c c
γ     ′ ′ ′= + − − − +    

    
.      (52) 

In the case of absolute simultaneity (n’=1+V/c) (52) becomes 

1
R EE Eγ −′ = . 

Defining the OY and O’Y’ components of the momentum as 

,R R R yp m u′ ′ ′=            (53) 

, ,E y E E yp m u=            (54) 

we obtain 

. ,R y E yp p′ =            (55) 

resulting that the (OY(O’Y’) components of the momentum are not only synchrony parameter free but 
also invariant as well. 

Generalizing the results obtained so far we can say that the equation that performs the 
transformation of the vector component of a four vector is synchrony parameter independent whereas the 
scalar component transforms according to a synchrony parameter dependent one. 

 
8.Conclusions 
 

The general synchrony parameter dependent Edwards transformations [4] could be derived 
following the principle of the invariance of the round trip of the speed of light but also using the ready 
derived Lorentz-Einstein transformations and performing the transformation of the space-time coordinates 
generated by the subluminal signal that performs the nonstandard synchronization when it arrives at the 
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location of the clock to be synchronized. Different values of the synchrony parameter n’ recover particular 
approaches to the problem. The problem is extended to two space dimensions and to the role played by 
clock synchronization in relativistic dynamics. 

 
References 
 
[1] A. Einstein, “Zur Elektrodynamik bewegter Korper (On the electrodynamics of moving bodies)”, 

Ann. Physik. (Leipzig) 17, 891-921 (1905); Guido Rizzi, Mateo Luca Ruggiero and Alessio Serafini, 
“Synchronization gauges and the principles of special relativity,” arXiv:gr-qc/04099105v2 18 Oct 
2004   

[2]  H. Reichenbach, Axiomatization of the Theory of Relativity (University of California Press, 
Berkeley 1969 

[3] Y. Z. Zhang, Special Relativity and its Experimental Foundations, (World Scientific Publishing Co. 
Pte. Ltd. (1996) 

[4]  W. F. Edwards, “Special relativity in anisotropic space,” Am.J.Phys. 31, 482 (1963) 
[5]  F. R Tangherlini, “On energy-momentum tensor of gravitational field, Nuovo Cimento Suppl. 20, 

351 (1961) 
[6]  F. Selleri, “Remarks on the transformation of space and time,” Apeiron, 4, 116-120 (1997)  
[7]  R. de Abreu and V. Guerra, Relativity; Einstein’s Lost Frame, (Extra Muros Portugal 2005) 
[8]  A. P. French, Special Relativity, (Nelson 1968) p.92 
[9] T. A. Moore, A Traveler’s Guide to Space-time; An Introduction to the Special Theory of Relativity 

(McGraw-Hill, Inc, 1995) pp. 65-68 
[10]  Reference [9] pp. 150-154 
[11]  W. Moreau, “Wave front relativity,” Am.J.Phys. 62, 426 (1994) 
[12] B. Rothenstein, S. Popescu and G. Spix, “Illustrating the relativity of simultaneity,” arXiv: 

physics/0511062 v1 [physics.ed-ph] 2005  
 


