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Abstract - We show that the transformation equations fergpace-time coordinates of the same event, deoved
the basis of the constancy of the round trip spafelight, could be derived by performing the Lorzfinstein
transformations of the event generated by a sulblainoine way signal when it arrives at the locatibthe clock to

be synchronized with the clock located at the arigfi the inertial reference frame. Considering thatropagates
with speed &c/n (n>1), n dependent “general transformationatiqns are derived. Particular values of n are
considered, leading to absolute simultaneity.
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1. Introduction

The standard formulation of the pogtgaon which Einstein’s special relativity is baséates: [1]
(o) Relativity principle: All physical laws are tharae in any inertial reference frame (IRF). No refee
frame is “privileged” i.e. distinguishable the otl{fRF)’s by means of “internal” empirical evidersce
(B1) Invariance of the velocity of light: The velociof light in empty space is the same in all (IRIE.
value is given by the universal constant c. Itaesidered [2] thatf};) cannot be empirically tested and so
they consider thaf3{) should be stated a$i;] The velocity of light is a universal constanincany (IRF)
along any closed path.

The two propositionspf) and (2) lead to different synchronization procedures. Baire
performed in a given (IRF), say |, involving thecks Ky(0) and K(x), the first located at the origin Oeth
second at a point M(x) located on the OX axis. Fedla illustrates the synchronization of the twackb
based onf{;), proposed by Einstein, on a classical space-tilagram.. When clock #0) reads & a
source of light S(0) located at the origin O enaitigght signal in the positive direction of the @Xis. It
arrives at the point M(x) when the clock K(x) loedtthere readstx/c. Being reflected back without
delay it returns to the origin O when clock(&) readst Relativists say that #0) represents the wrist
watch of an observer ) located at the origin O. We underline thatsta reckoned time, the times t
and t being displayed by the wrist watch mentioned abdhe timesd t= and t being related by
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te=t, = (1)
C
X
tE :tr _E (2)
resulting
tE:%(teHr). 3)

The conclusion is thatdcan assign to the event associated with the &wiviéne synchronizing
signal to point M(x) a time coordinateknowing the corresponding readings of his wristoa
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Figure 1. (a) lllustrating the synchronization wbtdistant clocks, following Einstein’s procedupg) (on a classical
space-time diagram. (b) Illlustrating the synchration of two distant clocks following Reichenbachi®cedure on
a classical space-time diagram.

Figure 1.b illustrates the synchronization of taene two clocks based on sentergg. (A source
located at the origin O emits a signal that propegyat a subluminal speeg<c when the clock located
there reads.t The emitted signal arrives at the location otkl(x) when the wrist watch of observeg R
reads 4 =x/c. and returns back to the origin O propagating wjtked &c when the clock located there
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reads ¢ The clock readings &ind t are the same as in the case of fhg fynchronization. The geometry
of the classical space-time diagram tells us that aind tare related by

X

tR = te +C_+ (4)
X

=t~ (5)

Combining (1) and (4) the result is

X c
tE :tR +E(1_C—+J (6)
whereas combining (2) and (5) the result is
X c
tE :tR_E(l_C—_J. (7)

Consistency requires that

1-S = —(1—1J (8)

C c

+ —

or

oOIN

= _1 +_1 (9)
c, C
c in (9) representing the two way (round trip) spetlight. Equation (9) shows that the one wayespef
light in special relativity theory and the roungbtspeed of light are equivalent.
2. Continuing with Einstein’s philosophy

Einstein considering equation (6) will say thatsitthe result of a scenario followed from the |
inertial reference frame, that involves the clocKOX located at the origin O and the clockg¥ and
K2(x) located at the same point of the OX axis. Cl&gkx) is synchronized to §0) using an one way
signal that propagates with speed c, whereas dta€k) is synchronized to #0) using a subluminal
signal propagating with the speegkc. In order to simplify the notations we consitleat c=c/n where
n>1 with which (6) becomes

te =t,+ > (1-n). (10)
C

In accordance witho (10) reads in I
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I I X
te =ty +=(1-n) (11)
Cc

Following in his philosophy Einstein will considérat the Lorentz-Einstein transformations

x =y (X +Vt. ) (12)

t = y(x’ +%tg] (13)
C

X = y(1-Vt.) (14)

= y(tE v xj (15)
C

hold exactly only in the case when the tinkesnd t. are displayed by standard synchronized clocks, V

representing the constant speed with which I' moxedative to | in the positive direction of the
permanently overlapped OX(O’X’) axes. They shoukbahold exactly when we replace in thesmahd

t. with (10) or (11) respectively Doing so a trandftes place from the times displayed by clogk$ (

synchronized, to times displayed by clocg 6ynchronized using subluminal signals.
Consider that in I' frame the clocks are synchredimsing the subluminal signal, that generates,

arriving at the location of clock&,(x) and K,(x), the event
I I I I X' I
E =[x,tE =tR+€(1—n)] (15a)

Performing the Lorentz-Einstein transformationghaf space time coordinates which define event
(15a) the result is

X = y{[h!(l— n')} X +Vt;} (16)

c
t. = y[t; +£(1+! - n’ﬂ . (a7)
c c
Combining (16) and (17) we obtain the correspondingrse transformations
X = y(x-Vt) (18)
= y{[ﬂ! 1-n )}tE -(1— n +¥j5}. (19)
c c)c

That approach is suggested by Yuan Zhong Zhangdidulfilled. [3]
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Equation (18) being synchrony parameter indepenidéraids in all “theories” that correspond to
different values of the synchrony parameter n'.

3. Continuing with Reichenbach’s philosophy

The equations we have derived above are presentethamy authors. A review of them is
presented by Yuan Zhong Zhang [3]. Edwards [4]wé=rithem fromd) and 3,) considering that in both
inertial reference frames the synchronization efdlocks takes place with different synchrony paaters
g and g’ respectively. In the particular case wimehthe clocks are standard synchronizgg (vhereas in
I’ the clocks are nonstandard synchronized, thedtdg/[4] transformations become using our notations

X = y((x=Vtg) (20)

té=y“}+!qjk—(!+qu} (21)
C C C

resulting that following Einstein’s philosophy , wan consider that Edwards equations are the rasult
one way clock synchronization in I', using a symhizing signal that propagates with speed (1-&) i.
with speed

C
= 22
1-q (2)

U

c, =

3_|(')

resulting that for n’=1 and g’=0 we recover the &iz-Einstein transformations. g’ being negative, t
synchronizing signal in I’ is subluminal.

If Edward’s synchrony parameter dependent transition equations were derived following
Einstein’s philosophy we could consider that &k t‘theories” that result for different values biet
synchrony parameter n’ are the consequence ofitie philosophy.

4. Tangherlini [5] Selleri [6] and Abreu and Guerra[7]. Absolute simultaneity

The transformation equations proposed by the asthwntioned above and probably by many
others are characterized by the fact that the fmamstion equation they propose, for the time cowtés,
lead to absolute simultaneitfAte=0 implies At;) We recover them from the synchrony parameter

independent equation (20)
X = y(x-Vtg) (23)

and from (21) imposing the condition that they ddddae space coordinate independent which could be
fulfilled imposing to n” and g’ the values

1—H+%=0 (24)
d+%=0 (25)

recovering the transformation equation proposethbge authors

6



B. Rothenstein and M. Costache J. Phys. &tli.2 (2009)

tr = ¥ e (26)

The peculiarities of the different ways in whichuatjons (23) and (25) are derived could be found
out from the original papers we quote.

5. An extension to two space dimensions

Introductory textbooks [8] perform the transitiororh one space dimensions to two ones by
simply adding to the transformation equations d=tigo far the equation

y=y (27)

as a result of the fact that distances measurgeepércular to the direction of relative motion hatie
same magnitude in all inertial reference framesiative motion. The proof of (27) does not involight
signal being merely a consequence of the relatprityciple [9].

Considering the equations (23) and (27), both sygrohparameters independent we could state
that all the physical quantities defined as a qunitof two lengths measured in the same inertfateace
frame are synchrony parameter independent as Ala first example we could consider the aberration
of light effect [10] We introduce polar coordinate®) in | and (r'9’) in I’ for defining the location of a
point where events take place (r,r’ lengths of fasivectors,0,0’ polar angles made by the position
vectors with the positive direction of the permahenverlapped OX(O’X’) axes. Combining (23) and
(27) expressed as a function of polar angles waiolihat the lengths of the position vectors trarmsfas

1—!0096
[ 12 12
r'=x2+y2=r—& vE (28)
g

a n’ independent transformation formula
What we compare in an aberration of light effee Hre polar angle8 and 0’ that define the
directions along which the same signal propagatesnvdetected from | and I’ respectively. By defont

v cosﬁ—x
COSQ' = — = V—C . (29)
r 1—; co’

which leads directly to

cos@ +¥
cosH:——T7——£L. (30)
1+~ cos
c

enabling us to present (28) as
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r=r_C¢ (31)

1—¥ cos?
C

Equations (28) and (31) are largely used in speeiakivity theory. If r=ct describes the wave
front of a spherical wave emitted from O at t=Oed&td from | then (28) describes the wave frornthef
same wave detected from I'. [11] B=R/c represent the geometric locus of simultanewests in | then
(28) represent their geometric locus in I' [12].

We underline that the transformation equations vedriabove have the same shape in all
“theories” that correspond to different valuesltt# synchrony parameter n’.

6. Kinematics in different theories corresponding ¢ different values of the synchrony parameter n’

The definition of the speed of a given tardyon ies time the transformation of which involves

" X , X
the synchrony parameter n’ and so does speed. iyta® ug :t_ and ug,, :t_' represent the speeds
E R
of the same tardyon measured in | using standandhsgnized clocks whereas in I’ using nonstandard
synchronized ones we obtain that they transforrd)(ad

Ug -V

Viaem|=Yex( 1oy Y
[1+C(1—n)} C(l n'+ j

c

I

Ugx =

(32)

resulting that the origin O’u, =0) of I' moves with speed V relative to |, the ongD of I (ux=0
moving relative to I’ with speed

Vi, = V‘—V , (33)
1+—(@-n")
c
Imposing the condition of absolute simultaneity=t+V/c) the equations derived above become

' u., -V

uR,x,n':1+V e = # (34)
s
and
, \/
VR,x,n':1+V e = _7 . (35)
1-=
C

The light signal that propagates with speed cikadb | propagates with speed , relative to I
with speed
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, c
Crx =y - (36)
1+%
c

Extending the problem to two space dimensions we/gé¢he transformation equations for the
OY(O'Y’) components of the speed of the same tandstarting with its definition in I’

\/1_\/22uy
K : (37)
[1+V(1— n')}—““(l— n +Vj
C C C

Introducing polar coordinates (32) and (37) become

U —_

Ugy =

Y.
ts

cosﬁ—l\f
U, = Ug : (38)
{1+V (1- n’)} —uE(l— n +Vj cog
C C C

2
,/1—\/—2 sing
¢ (39)

{1+V (1- n')} —uE(l— n +Vj cog
c C C

uR,y =uc

the magnitudes of the speeds transforming as

\/(cos@—vj +(1—V22) sif @
L u c
B Y

(40)

If we replace the tardyon considered so far wifhaton that propagates relative to | with speed ¢
in all directions in space, equation (40) tellsthist detected from I’ its propagation is anisotoopeing
described by

Vv cos@'+!
1-— C
1—\écosﬁ ¢ 1+\é co¥'
C.=C = ) 41
R V ’ ' V V ( )
1+—@-n")-| 1-n"+— v cosgd +— Vv
c c 1+(1—n’)—0(1+—n'j
¢ 1+EC089' ¢

In the case of absolute simultaneity (41) becomes
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, C
CF(,n':1+V e — (42)

1+! cosd
c

resulting that in the direction of the O’Y’ axi@€n/2 and®’=3n/2) anisotropy fades away.
7. The role of synchronization in relativistic dynamics

The problem is to find out synchrony parameter ddpat transformation equations for the
momentum and the energy of a tardyon. Observera fr&knowing classical dynamics define the OX
component of the momentum as

Pex = MUg (43)
whereas observers from I’ will define it as

Phx = M, (44)

Combining (43) and (44) we obtain

| -V
pR',X - pE,X V EE,X V . (45)
T M Y a-n)-"E -+ )

c c c
Equation (45) suggests considering that
Prox =T (Pes—MV) (46)
m, :r{m[h!(1—n')}—h(1—n'+!} (47)
c c c

whereTl is an unknown function of the relative speed V ot of the physical quantities involved in the
transformation process. We obtain its algebraiecstire imposing theondition that for n’=1 (47) become
the transformation equation proposed by Einstespé&cial relativity theory

, \Y
m = y(m—? DE,XJ (48)

where m and m’ represent the relativistic massdbhetame tardyon measured in the conditions thit i
and I’ the clocks are standard synchronized. Theltés

V2 -1/2
M= V= (1_?) (48)

and so we obtain the synchrony parameter indepé¢m@dersformation
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Prx = —F— (49)

and the synchrony parameter dependent one

m; :y{m[h%(l— n’)}—(l— n’+!Jh} (50)

c c

Defining B=m¢ and E., =m.c® as being the energies of the same tardyon measutehd in I’
respectively (49) becomes

, V
Prx = J/[ Pe « _? EE) (51)

equation (50) becoming
.= y{{h!(l— n')EE}—{l— n'+\ﬂ cpEx}. (52)
c :

In the case of absolute simultaneity (n'=1+V/c))(62comes

Defining the OY and O’Y’ components of the momentasn

Pl = ML, (53)
Pey = MU, (54)
we obtain
Pry = Pey (55)

resulting that the (OY(O’Y’) components of the marhen are not only synchrony parameter free but
also invariant as well.

Generalizing the results obtained so far we can & the equation that performs the
transformation of the vector component of a fourteeis synchrony parameter independent whereas the
scalar component transforms according to a syngtparameter dependent one.

8.Conclusions

The general synchrony parameter dependent Edwaassférmations [4] could be derived
following the principle of the invariance of theural trip of the speed of light but also using teady
derived Lorentz-Einstein transformations and penfag the transformation of the space-time coordisat
generated by the subluminal signal that perfornesnibnstandard synchronization when it arrives at th
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location of the clock to be synchronized. Differgatues of the synchrony parameter n’ recover Qagr
approaches to the problem. The problem is extetnlédo space dimensions and to the role played by
clock synchronization in relativistic dynamics.
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